

Design and Development of Card Games Based on Unity 3D

Yucong Pana, Kun Wangb, Hanqi Shaoc, Zhenghe Chend, Wenli Donge, Xin Wangf
School of Digital Media & Design Arts, Beijing University of Posts and Telecommunications Beijing, China
a873846532@qq.com, bwang763776553@qq.com, c377677840@qq.com, d940199956@qq.com, e134672609

1@qq.com, f2936239615@qq.com

Keywords: Unity 3D; Coroutine; Role-Play Game; Card Game

Abstract: Card games originate from the role-playing card games played by two or more people on
the table. Players play the role in the background of the game and play games using cards on a
Turn-Base Strategy. Card games are the mainstream in China's mobile game market, and because of
their non-real-time characteristics, they are very different from ordinary games in coding: a large
part of the calculation is not done in Update (), but using a very convenient function in Unity –
Coroutine to solve. This paper introduces in detail the development process of a card game named
Dice of Destiny, including game design, programming, interface design, card model and mapping,
and so on. Among them, programming is the key part of the whole game. How to use the
collaboration to realize many functions of the game conveniently is the innovation in the technical
link.

1. Introduction
Dice of Destiny is a role-playing game with card as the core of narration. Each time you draw a

card, you will come across a story or meet some events that require players to participate. It is
possible to encounter a certain number of enemies or some decisions that need to be made. When the
last card is drawn, you will enter the final battle and know the ending of your story. There are totally
three endings in this game, which depends on the decisions you made during the game. If you
deplete your health or are defeated by enemies, you will fail. The Battle and selection in the game
are largely completed using six dices on the desktop. There are three different patterns on each of the
dices: Sword, Shield, and Lightning. Each represents attack, defense or charge. To prevent the result
from relying too much on luck, we set a reset mechanism for the player. After completing the first
cast, you can lock any number of desired dices and recast the others.

2. Game Design
2.1 Battle System

The battle system of Dice of Destiny is basically like a Turn-Base game. To win the battle, you
need to decide carefully how to deal with the results of each of your cast. As has been mentioned,
there are three different patterns of each dice. And the following elaboration is about the details of
their functions.

(1) Defense: if you get a shield from your cast, then you will get a defense point. After that, you
will be rewarded an absorb-damage shield, which equals your armor multiplied by defense point.
Defense point will be cleared when each turn starts.

(2) Charge: the lightning shows on the dice represents a charge point, when you fill up the
charging bar with up to 10 charge points, you can use the unique skill Justice Sword, which will
significantly damage one enemy and give you an absorb-damage shield.

(3) Attack: The sword means an Attack Point, after casting your dices, you’re able to attack your
enemies using the attack point. Each attack will cost one attack point and cause damage to a specific
enemy, the power of your attack is depending on your attack power.

2019 2nd International Conference on Mechanical Engineering, Industrial Materials and Industrial Electronics (MEIMIE 2019)

Published by CSP © 2019 the Authors 388

 After finishing player’s turn, there will be an enemy’s turn, in which each enemy will attack the
player and the damage is also depending on their attack power. If possible, some enemy will use
their special skill to heavily damage the player. And then there follows another player turn again.

2.2 Content of Cards
The game’s card group contains about 25 cards totally:
1.A set of Begin Card, which aims to do the introduction of the story and the character of the

game.
2.Two sets of Diversity Card, which include a few selections and will have a significant impact on

the ending of the story. And it may also influence the status of your character.
3.A set of Ending Card, which lists the elaboration of which ending you’ve achieved. The ending

of the story completely relies on the choices you’ve made before.
4.The cards left are called Basic Card, which can be differentiated as Enemy Card, Event Card

and Treasure Card:
Enemy Card means you’ve encountered a few enemies that you must defeat. It will start the Battle

System of the game. Event Card will trigger a special event, which may offer some choices for the
player to consider. While no matter whether you choose, it won’t have any influence on your ending,
but will probably change the status of your character, like attack power or health, either positive or
negative. As for Treasure Card, it will give you a chance to open a treasure box. However, the
treasure inside may also have some harmful effect on your character.

After the player starts a new game, the system will automatically generate a card sequence, which
determines the order of card you will draw out. Since it's of low possibility for the player to have the
same game as he has played once before.

3. Code Design
3.1 About Coroutine:

Because of its particularity, the card game is quite different from the general real-time combat
game. In real-time combat, a large part of the computation is done in Update (), but for card games,
which are like Turn-Base games, we need to use a very convenient function in Unity, Coroutine.

What is a Coroutine? Coroutine in Unity is a function that can pause execution, returns
immediately after the pause, and continues execution until the function completes. It's like a child
thread that comes out alone to handle some problems, with less consumption, but there can only be
one running Coroutine in the main thread provided by MonoBehaviour.

The characteristics of Coroutine are:
1. Coroutine is suspended when it comes across an interrupt instruction (yield return).
2. Once the execution of the Coroutine is suspended, it immediately returns to the main function.

Then it continues to execute the remaining functions of the Coroutine after the suspension.
3. After the interrupt instruction is completed, Coroutine will resume at the next line of the

interrupt instruction.
4. At the same time, a script instance may have multiple suspended Coroutines, but only one

running Coroutine.
5. After the body of the function in Coroutine is completed, the Coroutine ends.
6. Coroutine can easily control behaviors after a certain number of frames.
7. Coroutine has almost no more cost in performance than general functions.

389

3.2 How to Create a Coroutine:

Fig 1. How to create a coroutine.

 Use the keyword IEnumerator to create a Coroutine, then use StartCoroutine(IEnumerator
routine). You can also use StopCoroutine() or StopAllCoroutine() to end Coroutine

3.3 About Interrupt Instructions
Tab 1. Interrupt instructions

Instructions Description Implementation
WaitForSeconds Wait for specified seconds Yield return new WaitForSeconds(2);

WaitForFixedUpdate Wait for a FixedFrame Yield return new
WaitForFixedUpdate();

WaitForEndOfFrame Wait for the end of a frame Yield return new
WaitForEndOfFrame();

StartCoroutine Start a new Coroutine and wait for
its end.

Yield return StartCoroutine(other
coroutine);

WWW Wait for a load to complete Yield return www;
 For instance, if you use yield return new WaitForSeconds(0.8f), the Coroutine will pause for 0.8

seconds then continue to execute. While if you use yield return StartCoroutine(OtherCoroutine()),
Then a new Coroutine will be started, and the original one will continue to execute after the new one
is completed. Due to its flexibility, we can simply achieve lots of difficult target during the
development of the game. Here comes an example:

Fig 2. Example of a coroutine.

390

3.4 Server & Data Base

Fig 3. Connection work.

To realize cloud storage and server data processing, we use Photon Server, Visual Studio and
MySQL to build servers and databases.

First, we should set up the Photon Server and make sure the corresponding Photon Server runtime
environment is configured. Then we can build the server using Visual Studio to realize its
corresponding functions of connection and data transmission with the Unity game console. Once
after the MySQL database is settled, we can create a database list through MySQL, which stores user
login information, character status information, and level information. So, we can read them through
the server. Data transfer between Photon Server and MySQL, through NHibernate, to map the
database storage list to the server, and then through the server to add, delete and change the data
stored in MySQL, and then achieve the corresponding functions. Network connection and data
transmission between Unity and Photon Server. On the Unity game side, the server is connected by
accessing the IP address of the server, and the data transmission function between the two is realized.

4. Artwork
4.1 User Interface

As the dragon is the ultimate boss of the game, so we choose a picture with a dragon to match the
scene, while adding a mysterious atmosphere, adjusting the tone, making the whole background
more unified.

Fig 4. Background of the game.

Fig 5. Button.

391

Fig 6. Sign in Page

4.2 Model of Card
Card modeling is done in MAYA. In the early stage, it was a rectangle and thin game card in a

traditional concept. To pursue the realistic effect and match it with the whole game style, the
chamfering roundness of four card angles is tried. The degree of chamfering is repeatedly tested here.
Finally, the results shown in the following figure are determined.

Fig 7. 3D model of card.

 In MAYA, we apply the card 3D model map segmentation, export UI mapping into PNG, and
then draw it in PhotoShop. That’s how we complete the model mapping work. The following
illustration shows the unmapped blank card UI image (left) and the mapped card UI image (right) for
testing.

Fig 8. Texture of card.

4.3 Rules of Card
Status cards, a total of 4, belong to the protagonist (that is, the player) character status, mainly for

survival and combat, including "health", "defense", "attack" and "charge" four different kinds of card.
Charged "lightning" represents skill point, after reaching a certain value, it can allow the player to
cast his ultimate skill; defense uses "shield" to represent defense point, which helps the player to

392

absorb damage from enemies; attack uses "sword" to represent attack point, which counts how many
times you can attack totally; health uses a "heart" to represent your health, when the player’s health
decrease below zero, he fails the game.

Fig 9. Charge, Defence, Attack and Health

Besides, there are many ordinary cards, such as event card, enemy card or treasure card, which
will be added randomly to the card sequence.

Fig 10. Enemy Cards

Beginning card: A total of three, because the beginning story is too long, it is divided into three
parts, respectively, "Loren Kingdom", "Nightmare Coming" and "Rejuvenation March" three story
cards corresponding to the three parts.

Diversity cards: there are two turning points. Because the story of the turning point is long,
turning point A is divided into three parts, named "strange forest", "mysterious man", "the soul of the
dragon". Three story cards correspond to three parts. Turn B is divided into two parts, namely "Old
Prophet" and "White Disk". The two story cards correspond to the two parts.

Ending card: There are three kinds of endings. For the same reason, endings A is divided into
three parts, which are "defeat dragon", "treasure" and "reincarnation". Three story cards correspond
to three parts. Ending B is divided into three parts, named "defeat the dragon", "triumph",
"conspiracy". Three story cards correspond to three parts. Ending C is divided into three parts,
named "defeat dragon", "truth" and "journey". Three story cards correspond to three parts.

4.4 Design of Poster
Considering the uniform effect of the poster, it was designed in CorelDRAW to make it more like

a dice tetragon, and the following draft was obtained.

393

Fig 11. Logo of the game

According to the overall style, we use more rock style charts to overlay the mask and color them.
Then adjust the overall tone to golden yellow, and then increase the sense of grandeur, making it
bleaker and more vigorous.

Fig 12. Poster

5. Results

Fig 13. Login Page

Fig 14. Main Interface

394

Fig 15. Battle Interface

References
[1] Gregory J. Game Engine Architecture [M]. CRC Press, 2009:45-52
[2] Carlson R E. Universal Gaming Engine:U.S Patent 5,707,286[P]1998-1-13.
[3] Wei Rao. Informal Discussion on the Development of Mobile Games in China [J]. science and
education, 2006 (07): 153-154
[4] Yusong Xuan. Unity 3D Game Development [M]. people post and Telecommunications
Publishing House, 2012:55-70.
[5] Yun Shang. Card Game at the Crossroads [J]. computer application digest, 2014 (13): 68-69.
[6] Feng Jiang. 3D Game Engine and Implementation [D]. Zhejiang University, 2005:10-13

395

	1. Introduction
	2. Game Design
	3. Code Design
	4. Artwork
	5. Results
	References

